
Research Article

Optimization of mixed fare structures:
Theory and applications
Received (in revised form): 7th April 2009

Thomas Fiig
is Chief Scientist in the Revenue Management Development department at Scandinavian Airlines System
(SAS). He is responsible for developing methods and strategy for revenue management systems at SAS,
including the overall design and methodologies of the O&D forecasting and optimization systems. His recent
work has focused on methodologies for O&D optimization in semi-restricted fare structures and estimating
price elasticities. Dr Fiig holds a PhD in Mathematics and theoretical Physics and a BA in Finance from the
University of Copenhagen.

Karl Isler
is Head of Operations Research and Strategy in the Revenue Management, Pricing and Distribution
department of Swiss International Airlines. He holds a PhD in Theoretical Physics from ETH Zurich. He
developed the concepts for the integrated O&D pricing and inventory control strategy used by Swiss.

Craig Hopperstad
is currently president of Hopperstad Consulting. Previously, as Project Director in the Boeing Commercial
Airplane Group, he was a principal in the development of passenger preference, fleet planning, scheduling
and revenue management models. He is the author of numerous papers and presentations, many of which
deal with the application of the Passenger Origin/Destination Simulator (PODS), which he developed at
Boeing and for which Hopperstad Consulting now holds a license.

Peter Belobaba
is Principal Research Scientist at the Massachusetts Institute of Technology (MIT), where he teaches
graduate courses on The Airline Industry and Airline Management. He is Program Manager of MIT’s Global
Airline Industry Program and Director of the MIT PODS Revenue Management Research Consortium. Dr
Belobaba holds a Master of Science and a PhD in Flight Transportation Systems from MIT. He has worked as
a consultant on revenue management systems at over 40 airlines and other companies worldwide.

Correspondence: Peter Belobaba, MIT International Center for Air Transportation, 77 Mass. Ave., Room
33–215, Cambridge, MA 02139 USA
E-mail: belobaba@mit.edu

ABSTRACT This paper develops a theory for optimizing revenue through seat inventory control that can
be applied in a variety of airline fare structures, including those with less restricted and fully undifferentiated
fare products that have become more common in the recent past. We describe an approach to transform the
fares and the demand of a general discrete choice model to an equivalent independent demand model. The
transformation and resulting fare adjustment approach is valid for both static and dynamic optimization and
extends to network revenue management applications. This transformation allows the continued use of the
optimization algorithms and seat inventory control mechanisms of traditional revenue management systems,
developed more than two decades ago under the assumption of independent demands for fare classes.
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INTRODUCTION AND
MOTIVATION
Traditional airline revenue management (RM)

systems, developed in the late 1980s, make use

of forecasting and optimization models that

assume independent demands for each fare class

on a flight leg, and/or for each passenger

itinerary (path) and fare class in an airline

network. This assumption of demand indepen-

dence was facilitated by airline fare structures

characterized by multiple fare products, each

with different restrictions such as minimum

stay requirements, advance booking and tick-

eting rules, cancellation and change penalties,

as well as non-refundability conditions. That is,

passengers that purchase a given fare type are

assumed to be willing to purchase only that

particular fare type, with no possibility of

choosing a lower fare, another itinerary (path)

or another airline. Although this assumption of

demand independence was never completely

accurate, virtually all airline RM forecasting

and optimization models were developed on

this basis.

With changes to airline pricing practices in

recent years, what was a questionable yet

tolerable assumption for RM models became

almost completely invalid. The emergence and

rapid growth of low cost carriers (LCC) with

less restricted fare structures has led to the

introduction of a variety of ‘simplified’ fare

structures with fewer restrictions and in some

cases no restrictions at all. Without modifica-

tions to traditional RM forecasting and optimi-

zation models, along with their associated seat

inventory control mechanisms, less restricted

fare structures result in more passengers (higher

load factors) purchasing lower fares (lower

yields), but lower total revenues for the airline.

This paper develops a theory for optimizing

revenue through seat inventory control in

a completely arbitrary airline fare structure.

Examples that will be considered here include

independent product-oriented demand (also

known as ‘yieldable’ demand) in traditional

differentiated fare structures; price-oriented

(that is, ‘priceable’) demand with undifferen-

tiated fares; and hybrid demand in fare

structures with a mixture of differentiated and

undifferentiated fare products.

The applicability of this approach to any fare

structure (and hence the associated passenger

choice demand) might suggest that the optimi-

zation theory is complex. On the contrary – we

will derive a marginal revenue transformation

of the fares and the choice demand to an

equivalent independent demand model. This

transformation allows the continued use of

existing optimization algorithms and control

mechanisms in traditional RM systems. The

marginal revenue transformation can be applied

to all existing leg-based and O-D control RM

systems, including EMSRb leg-based con-

trol, Displacement Adjusted Virtual Nesting

(DAVN) and Dynamic Programming (DP), as

will be illustrated.

This paper restricts its discussion to the opti-

mization theory and thus assumes that we are

able through some other means to forecast the

demand of the choice of fare products in each

fare structure, as affected by both passenger will-

ingness to pay and the RM system’s inventory

controls. Demand forecasts that reflect fare pro-

duct choice require the estimation of demand

elasticity and sell-up parameters using separate

estimation models, as described in Hopperstad

(2007) and Guo (2008), for example.

The contribution of this paper is therefore in

the presentation of a new theory for revenue

management optimization that can be applied

to any airline fare structure. The practical

importance of this contribution is substantial –

use of this new optimization theory can allow

airlines to continue using traditional RM

systems and seat inventory control mechanisms

originally developed under the assumption of

independent fare product demands.

After a brief review of relevant revenue

management literature in the next section, we

define the current optimization problem in

the subsequent section and present a general

formulation in the section after that. We first

assume a number of simplifications: static

optimization (no time dependence), determi-
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nistic demand (no stochasticity), single airline

leg (no network) and a single market (one

specific price-demand relation). The theory is

by no means limited by any of these simplifica-

tions, which are only introduced to present the

theory more clearly. We then discuss specific

applications of the optimization theory to

different fare structures. In the section ‘Exten-

sions to stochastic models’ we show that the

theory extends beyond the simplifications made

above to stochastic models, including dynamic

programming. Simulated revenue results from

the Passenger Origin Destination Simulator

(PODS) are presented in the section ‘Simula-

tion results using PODS’.

LITERATURE REVIEW
Most revenue management techniques were

developed under a critical assumption that

demand for a given fare class is independent

of the demand for other fare classes. The

effective use of these revenue management

(RM) systems by airlines worldwide has been

estimated to generate on the order of 4–6 per

cent in incremental revenues (Smith et al,

1992). Barnhart et al (2003) describe the

evolution of revenue management systems since

the early 1980s. McGill and van Ryzin (1999)

provide a comprehensive survey of revenue

management literature, focusing on the evolu-

tion of forecasting and optimization models.

The optimization of airline seat inventory to

maximize revenue given multiple fare products

on a single flight leg can be traced back to

Littlewood (1972), who solved the fare class

mix problem for two nested fare classes.

Belobaba (1987, 1989) extended the nested

seat allocation problem to multiple fare

classes with the development of the Expected

Marginal Seat Revenue (EMSR) heuristic.

Curry (1990), Wollmer (1992) and Brumelle

and McGill (1993) described optimal solutions

for multiple nested fare classes. Belobaba (1992)

then modified the EMSR heuristic to better

approximate the optimal solution to the multi-

ple nested fare class problem. The modified

version became known as ‘EMSRb’, and is also

described in detail in Belobaba and Weath-

erford (1996). Dynamic programming models

have also been applied to the single-leg seat

inventory control problem, by Lee and Hiersch

(1993) and Lautenbacher and Stidham (1999),

among others.

Network RM systems (or origin-destination

controls) use network optimization mathe-

matics to determine fare class seat availability

based on paths (that is passenger itineraries),

not by individual leg, making them particularly

valuable to airlines that operate networks of

connecting flights. Smith and Penn (1988)

implemented one of the first O-D control

methods, virtual bucketing, at American

Airlines. Many network RM systems evolved

from this initial concept, leading to the

development of Displacement Adjusted Virtual

Nesting (DAVN). DAVN adjusts the value of

each path’s O-D fare for the estimated revenue

displacement of a passenger on the connecting

leg (Saranathan et al, 1999). Williamson (1992)

and Vinod (1995) offer more detailed descrip-

tions of O-D control and specifically the

DAVN approach.

An alternative mechanism for O-D control

that makes use of similar network optimization

logic is ‘Bid-Price Control’. Developed by

Simpson (1989) and elaborated by Williamson

(1992), this method requires that the airline

store a bid-price value (an estimate of the

marginal network revenue value of each

incremental seat) for each leg in the network.

For each itinerary request, seat availability is

determined by comparing the relevant O-D

fare to the sum of the bid prices on the legs that

the path traverses. Algorithms for calculating

bid prices in an airline network include

mathematical programming models by Talluri

and Van Ryzin (1998), heuristic approaches by

Belobaba (1998), and a probabilistic conver-

gence algorithm by Bratu (1998). Dynamic

programming can also be used to determine

optimal network bid prices, in theory at

least, as formulated by Gallego and Van

Ryzin (1997). In practice, the ‘curse of

Fiig et al
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dimensionality’ makes the size of the network

DP problem infeasible to solve for realistic

airline networks. Instead, some network RM

systems apply DP methods to single flight legs

to determine a vector of bid prices, in

conjunction with a mathematical programming

approach for network optimization.

The implementation of network RM sys-

tems by airlines has been estimated to generate

an additional 1–2 per cent in total revenues,

above the 4–6 per cent realized from the

traditional leg-based RM systems (Belobaba,

1998). Yet, virtually all of the optimization

models employed by these systems were based

on the assumption of independent demands,

first by flight leg and fare class, and then by

passenger itinerary (path) and fare class. None

of the traditional optimization models des-

cribed in the literature explicitly addresses the

complications caused by the move to less

restricted fare structures since 2000. As noted

by Tretheway (2004), the introduction of these

simplified fare structures ‘has undermined the

price discrimination ability of the full service

network carrier, and is the most important

pricing development in the industry in the past

25 years.’

Without adequate demand segmentation

restrictions, simplified fare structures allow

passengers that previously would buy higher

fares to purchase lower fare classes. The RM

system’s historical booking database then

records fewer bookings in the higher fare

classes which, in turn, leads to lower forecasts

of future demand for higher fare types. The

seat allocation optimizer then protects fewer

seats for higher fare classes and makes more

seats available to lower booking classes, which

encourages even more high-fare demand to

buy down. A mathematical model that des-

cribes this ‘spiral down’ effect was developed by

Cooper et al (2006).

Several works describing methods for rever-

sing this spiral down effect have focused on

modifications to the forecasting models used in

traditional RM systems. Boyd and Kallesen

(2004) proposed a segmentation between

price-oriented (or ‘priceable’) demand that

will always purchase the lowest available fare

and product-oriented (or ‘yieldable’) demand

that is willing to buy a higher fare due to

specific attributes or lack of restrictions. They

suggested that identification of price- vs

product-oriented demands in an RM database

could enable the airline to generate separate

forecasts of each type of demand, and to

combine these forecasts into a single ‘hybrid’

forecast. While traditional time series forecast-

ing models can be applied to the product-

oriented demand data, a forecasting approach

that includes estimates of willingness to pay (or

sell-up potential) is required to forecast price-

oriented demand for each fare class. Belobaba

and Hopperstad (2004) describe such a model,

called ‘Q-forecasting’, which can provide the

estimates of price-oriented demand required

for hybrid forecasts.

Talluri and van Ryzin (2004) formulated a

DP model for the case when consumer beha-

viour is described by a general discrete choice

model, and showed that only strategies on the

efficient frontier are relevant in the optimiza-

tion. In this paper, we show that any

optimization algorithm for an airline network

can be extended to a completely general fare

structure, as developed and first presented by

Fiig et al (2005) and Isler et al (2005). The

approach, also referred to as ‘fare adjustment’,

makes use of a marginal revenue transformation

that adjusts the fare and demand inputs to

traditional RM optimizers, effectively trans-

forming the choice model representing a

general fare structure into independent demand

of a fully differentiated fare structure.

THE OPTIMIZATION PROBLEM
In this section we describe the general

optimization problem and define the notation

to be used throughout the paper. We consider

the simplest possible example to develop the

optimization theory, that is, a single leg with

capacity cap. We begin with the solution of the

optimization problem when fares are fully
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differentiated (that is independent or ‘product-

oriented’ demand). The airline has published a

set of fares fi, in decreasing fare order: fi>fiþ 1,

i¼ 1,y, n�1. We assume that demand is

deterministic, with demand di for each fare

product.

In a fully differentiated fare structure,

traditional RM models assume that the demand

for each fare product is independent of whether

other products are available. As shown in

Figure 1(a), the revenue maximizing solution

is to allocate seats for all demands in decreasing

fare order until capacity is reached. The seats

available to the lowest fare product must be

limited by capacity. The step-wise decreasing

curve is the incremental revenue as function of

quantity (Q). The capacity constraint is shown

as the vertical line at cap¼ 100. Note that the

data behind Figures 1 and 2 are are summarized

in Table 1.

Figure 1(b) illustrates the quantities TRk and

Qk, denoting the total revenue and the total

quantity sold given k is the lowest fare level

available, as

Qk ¼
Xk

j¼1

dj and TRk ¼
Xk

j¼1

fjdj:

The total revenue increases monotonically

with quantity, calculated as the area below the

curve in Figure 1(a).

Now assume that the restrictions on the fare

products are removed, making them fully

undifferentiated (that is, ‘priceable’ demand).

The only distinction between the fare products

is their price levels and therefore customers will

always buy the lowest fare available. Even

customers willing to buy the higher fares will

now buy the lowest available fare. The total

revenue and the total quantity sold given k is the

Table 1: Data for example in Figures 1 and 2

Fare product Fare Demand Fully differentiated Fully undifferentiated

fi di Qi TRi MRi TRi MRi

1 $1200 31.2 31.2 $37 486 $1200 $37 486 $1200

2 $1000 10.9 42.1 $48 415 $1000 $42 167 $ 428

3 $800 14.8 56.9 $60 217 $800 $45 536 $228

4 $600 19.9 76.8 $72 165 $600 $46 100 $28

5 $400 26.9 103.7 $82 918 $400 $41 486 $(172)

6 $200 36.3 140.0 $90 175 $200 $28 000 $(372)
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Figure 1: (a) Incremental revenue as function of demand (quantity). Total revenue shown as shaded area below curve.

(b) Total revenue versus total demand (quantity).
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lowest fare available can now be expressed as

Qk ¼
Xk

j¼1

dj and TRk ¼ fkQk:

The total revenue is shown for both

the differentiated and undifferentiated case in

Figure 2. With all passengers buying the lowest

available fare, the total revenue for the

undifferentiated case falls below that of the

differentiated fare structure.

The incremental demand accommodated by

opening up fare class k is dk. However the

incremental revenue is not dk fk but a reduced

amount, which we can calculate by accounting

for the revenue lost due to buy down. The loss

from buy-down is given by Qk�1( fk�1�fk),

since the aggregated demand that previously

bought class k-1 now will buy class k. The

incremental revenue contribution by opening

up class k can therefore be written as dk�
fk�Qk�1( fk�1�fk). Another way to state this is

that, instead of receiving the fare fk by opening

up class k, we obtain an adjusted fare f 0k¼
[dk� fk�Qk�1( fk�1�fk)]/dk. The adjusted fare

is also known as the marginal revenue MRk and

may be calculated as the increment in total

revenue per capacity unit:

MRk ¼
TRk � TRk�1

Qk �Qk�1

¼ f
0

k

The marginal revenue is illustrated by the

lower curve, MR(Q), on Figure 2(a). Note that

the area below the curve corresponds to the total

revenue. As more seats are made available to the

lower fare, the marginal revenue becomes

negative, meaning the total revenue decreases.

Therefore the fare classes below $600 in this

example should always remain closed.

We can therefore summarize the solution

principle of the revenue optimization problem

as follows: Order the fares in decreasing marginal

revenue and open fares until capacity is reached or the

marginal revenue becomes negative. This general

principle is valid for both differentiated and

undifferentiated fare structures.

GENERAL FORMULATION
In this section we develop the theory for a

completely general fare structure, which may

have any set of restrictions attributed to each

fare product. The fare and the restrictions of a

fare product determine the probability that a

booking occurs for that product, which will

generally depend on what other products are

available as well.

An optimization strategy consists of opening

up a given set of fare products, Z. Examples

include opening all products N¼ {1, 2,y, n};

or keeping all products closed {}. In the

previous example, we considered the subsets

of opening fare products in decreasing fare
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Figure 2: (a) The demand curve P(Q) and marginal revenue MR(Q) for the undifferentiated case. (b) TR(Q) for both

differentiated and undifferentiated case.
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order {};{1};{1, 2},y, {1, 2,y, n}, which are

‘nested’ strategies. If we now allow a strategy to

be any set of fare classes open, there will be 2n

different strategies, ZDN.

The demand for a fare product depends in

general on the particular optimization strategy

Z. The demand for fare product j given strategy

Z will be denoted dj(Z). The total demand

for a given strategy is calculated as Q(Z)¼P
jAZdj(Z). The corresponding total revenue

for a given strategy (assuming no capacity

constraint) is given by TR(Z)¼
P

jAZ dj(Z)fj .

The general optimization problem can then

be stated as: max TR(Z) subject to Q(Z)pcap.

The solution to the problem can most easily be

solved by analyzing TR(Z) versus Q(Z) in a

scatter plot where each of the 2n different

strategies are plotted. These correspond to

what we can call ‘pure’ strategies. In addition to

the pure strategies, we may construct ‘mixed’

strategies by combining the pure strategies such

that each of the pure strategies are only used for

a fraction of the time.

The mixed strategies trace out the convex

hull of the pure strategies. This is marked in

Figure 3 as the shaded area, meaning that any

point within the shaded area is feasible.

The solution to the optimization problem

max TR(Z) subject to Q(Z)pcap is identified

as the upper boundary on the convex hull. This

portion marked with the solid lines is termed

the ‘efficient frontier’. Let the subset of

strategies that lies on the efficient frontier

(efficient sets) be denoted S0, S1,y, Sm. Here

S0¼ {} is the empty set with TR(S0)¼ 0 and

Q(S0)¼ 0. The total demand and total revenue

of strategy Sk is denoted by Qk and TRk

respectively. Note that Figure 3 illustrates the

general case where the optimal solution is

obtained by a mixed strategy.

These sets are ordered according to quantity

Qk�1pQk and TRk�1pTRk for k¼ 1,y, m.

The end-point for the efficient frontier is strategy

Sm, representing the maximum total revenue.

The first non-empty set is in general

S1¼ {1}, the highest fare in the fare structure,

since it has the highest value slope, TR(Z)/

Q(Z), which is a weighted average over the

fares in Z.

The marginal revenue transformation maps

the original fare structure into the transformed

fare structure. The demands for the transformed

products are given by the marginal demand d 0k
while the fares of the transformed fare products

are given by the marginal revenue.

d 0k ¼ Qk �Qk�1; k ¼ 1; . . . ;m

f 0k ¼ ðTRk � TRk�1Þ=ðQk �Qk�1Þ; k ¼ 1; . . . ;m

The marginal demand associated with each

strategy k is also called the partitioned or

incremental demand. The marginal revenues

are called adjusted fares. The transformation is

identical to the previous MR expression. The

usefulness of the marginal revenue transforma-

tion follows from the following theorem,

which we have proven by direct construction

of the convex hull (since the independent

demand model with demand d 0k and fares f 0k
would trace out exactly the same convex hull

and are therefore equivalent).

Theorem: The marginal revenue transforma-

tion transforms the original fare structure into

an equivalent model with independent fare

products.

Implementation of control
mechanism using fare adjustment
We have shown in the last section that the

marginal revenue transformation transforms

the optimization problem for an arbitrary fare

Demand Q

Total 
Revenue

Efficient 
Frontier

S1

Si-1

Si

d’i

Marginal 
revenue: f’i

TRi-1

Qi-1 Qi

TRi

All choice sets: Z

S0 CAP

Sm

Figure 3: Construction of convex hull.

Fiig et al

158 r 2010 Macmillan Publishers Ltd. 1476-6930 Journal of Revenue and Pricing Management Vol. 9, 1/2, 152–170



structure to an equivalent independent demand

model. But how is the booking control mecha-

nism transformed? A booking control mecha-

nism in traditional RM systems calculates

numerical seat availability for each booking

class based on the solution of the optimi-

zation problem and the current seat inventory.

However, in the transformed model the

strategies on the efficient frontier can involve

correspond to a subset of the original booking

classes, but not necessarily all classes in

decreasing fare order.

Consider for example an efficient frontier

with the efficient strategies {1, 2} at capacity 1,

{1, 3} at capacity 2, while {1, 2, 3} is inefficient.

If the capacity is 2, a nested booking limit

control would protect 1 seat for {1, 2} and allow

1 booking for {1, 3}, thus the seat availability for

{1, 2} would be 2 and for {1, 3} 1 correspond-

ingly. It is not possible to map this to seat

availability for the original classes without

opening the inefficient strategy {1, 2, 3}. New

distribution mechanisms would be required,

where the exact number of requested seats has

to be known in advance and the corresponding

strategy can be shown accordingly.

Many choice models have the desirable

property that the strategies on the efficient

frontier are nested, SkCSl, kol, for example

{1}, {1, 3}, {1, 2, 3}. Note that the nesting

does not necessarily have to follow the fare

order. On such nested efficient frontiers, a class

once contained in an efficient strategy will also

be contained in any of the next efficient

strategies as capacity increases. It is therefore

possible to map the original booking classes to

the strategies in which they occur first with

increasing capacity (or going from left to right

on the efficient frontier).

When the efficient frontier is nested, the

marginal revenue transformation can therefore

be interpreted as the assignment of demands

and fares to the original booking classes which,

when fed into the optimization algorithm

and the control mechanism for independent

demand, produces the correct availability con-

trol. This ease of implementing the control

mechanism suggests that we will in practice apply

a nested approximation, even in cases where the

nesting property is not exactly satisfied.

This simplification also applies to bid price

control. Here, the marginal revenue going from

one strategy to the next can be assigned to the

newly added classes. The bid price control is

therefore modified by using the marginal

revenue associated with the booking class

rather than the fare itself.

APPLICATIONS TO DIFFERENT
FARE STRUCTURES
In this section, we describe the application

of the marginal revenue transformation and

fare adjustment theory to different airline fare

structures – from traditional differentiated fares

to completely undifferentiated fares, along with

‘hybrid’ fare structures that include both types

of fare products.

Fully differentiated fare products
Under the traditional RM assumption of fare

class independence, the fare products are

assumed to be adequately differentiated, such

that demand for a particular fare product will

only purchase that fare product. Therefore, for

any set of fare products with fares fj, and

demands dj, j¼ 1,y, n, the marginal revenue

transformation yields

d 0k ¼ Qk �Qk�1

¼
X

j¼1;...;k

dj �
X

j¼1;...;k�1

dj ¼ dk

and

f 0k ¼
TRk � TRk�1

Qk �Qk�1

¼

P
j¼1;:::; k

dj fj �
P

j¼1;:::; k�1

dj fj

dk

¼ fk

k¼ 1,y, n. Thus for the differentiated fare

product case, the marginal revenue transforma-

tion acts as an identity and both demands and

fares are unaffected. We can refer to this

Optimization of mixed fare structures
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demand as being ‘product-oriented’. Let us

denote the unadjusted fare by f 0k
prod.

Completely undifferentiated fare
products
We now apply the marginal revenue transfor-

mation to a single flight leg with a fully

undifferentiated fare structure, again assuming

deterministic demand. The definitions of fares

fj, and demands dj, j¼ 1,y, n are unchanged.

Due to the fully undifferentiated fare structure,

passengers will only buy the lowest available

fare. Let k be the lowest open fare product,

then the demand for all other fare pro-

ducts becomes zero, dj¼ 0 for jak Hence the

cumulative demand equals the demand for the

lowest open fare product dk¼Qk, k¼ 1,y, n.

The demand Qk¼Qn psupk (assuming fk is

the lowest open) can be expressed as a sell-up

probability psupk from n-k, times a base

demand Qn for the lowest class n.

The marginal revenue transformation deter-

mines the adjusted fares. The demand

is calculated as d0k¼Qk�Qk�1¼ dk�dk�1

¼Qn(psupk�psupk�1).

The adjusted fares are given by

fk
0 ¼ TRk � TRk�1

Qk �Qk�1

¼ fkQk � fk�1Qk�1

Qk �Qk�1

¼ fk psupk � fk�1 psupk�1

psupk � psupk�1

:

Let us denote this by f 0k
price.

Note that the highest fare value is un-

adjusted:

f
0

1 ¼
TR1 � TR0

Q1 �Q0

¼ f1d1 � 0

d1 � 0
¼ f1

Consider the special case of exponential

sell-up Qk¼Qn psupk¼Qn exp(�b( fk�fn))

and assume for simplicity an equally spaced

fare-grid with fk�1�fk¼D. The marginal

revenue transformation yields:

d
0

k ¼Qn expðbfnÞ
ðexpð�bfkÞ � expð�bfk�1ÞÞ:

f
0

k ¼ fk � fM ; where

fM ¼ D � expð�b � DÞ
1� expð�b � DÞ

The adjusted fare can therefore be expressed a

the original fare minus a positive constant

called the fare modifier, fM. For a general fare

structure, the fare modifier will differ by class.

Because the fare modifier is the cost associated

with buy-down, it is also termed the price

elasticity cost.

In Table 1, the constant fare modifier can

be seen fM ¼ $572. Since seats are only

allocated to fare classes with positive adjusted

fares, we can interpret fM as the lowest open

fare. In the limit D-0, using l’Hopital’s rule

we obtain fM-1/b for D-0, which depends

only on the beta parameter in the exponential

demand model.

Hybrid demand in mixed fare
structures
In this section we show how to optimize a

single leg with a fare structure consisting

of a mix of differentiated and undifferentiated

fare products assuming deterministic demand,

using the marginal revenue transformation.

This is the so-called hybrid demand case. The

fare class demands are decomposed into

contributions from both differentiated (pro-

duct-oriented) and un-differentiated (price-

oriented) demand:

dj ¼ d
prod
j þ d

price
j ; j ¼ 1; . . . ; n

The marginal revenue transformation deter-

mines the adjusted fares. The demand for each

fare class is obtained as

d
0

k ¼ Qk �Qk�1 ¼
X

j¼1;...;k

d
prod
j þ d

price
k

 !

�
X

j¼1;...;k�1

d
prod
j þ d

price
k�1

 !

¼ d
prod
k þQn psupk � psupk�1ð Þ

Define rk¼ dk
prod/(dk

prodþQn(psupk�psupk�1)) as

the ratio of product demand to total demand.

Fiig et al
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The adjusted fare is given by

f
0

k ¼
TRk � TRk�1

Qk �Qk�1

¼

P
j¼1;:::;k

d
prod
j fj þ d

price
k fk

 !
�

P
j¼1;:::;k�1

d
prod
j fj þ d

price
k�1 fk�1

 !

d
prod
k þQn psupk � psupk�1ð Þ

¼ d
prod
k fk þQn fk psupk � fk�1 psupk�1ð Þ

d
prod
k þQn psupk � psupk�1ð Þ

¼ rk f 0
prod

k þ ð1� rkÞf 0 price

k :

Thus the adjusted fare in the hybrid case is

calculated by a demand-weighted average of

the unadjusted fare used for the product-

oriented demand and the adjusted fare for the

price-oriented demand.

EXTENSIONS TO STOCHASTIC
MODELS
In the previous sections, we considered deter-

ministic models on a single flight leg, in order

to present the theory more clearly. In this

section, we show that the marginal revenue

transformation also holds for stochastic models.

Furthermore, it extends to network optimiza-

tion provided the choice probabilities for the

different O-D paths are independent.

Talluri and van Ryzin (1998) provided a

consistent formulation of a stochastic network

dynamic programming model, but it cannot be

implemented in practice because of the curse of

dimensionality. In practice, stochastic network

optimization methods for airline revenue

management typically require some heuristic

aspects to generate approximate solutions.

Therefore, if we show that the marginal

revenue transformation holds exactly for the

DP approach, we can argue that it can also be

applied to any other solution method. We start

with the one leg model first, followed by a

straightforward generalization to the network

problem with independent O-D paths.

DP formulation for a discrete choice
model of demand
The dynamic program for one leg with an

arbitrary fare structure, such that demand

behaviour is modelled by a discrete choice

model, was developed by Talluri and van Ryzin

(2004). Dynamic programming models assume

that the bookings can be modelled as a

Markov process with small time steps such

that the probability of more than one booking

is negligible. The arrival probability of a book-

ing is denoted by ltX0 and the remaining

capacity xt for each t serves as state variable.

At the beginning of each time interval, the

airline can choose the set of products available

for sale. A strategy therefore consists of the set

of open classes Zt(x)DN, where N is the set

of all classes.

Given an arrival and strategy Zt, the prob-

ability that product jAZt is chosen is denoted by

pj(Zt). The expected demand for product j in

time slice t is therefore dj(Zt)¼ l � pj(Zt), which

is the probabilistic analogy of the deterministic

models of the sections ‘General formulation’

and ‘Applications to different fare structures’.

The DP model can handle time dependent

choice probabilities and arrival rates as well, but

for the sake of simplicity, we did not introduce t

indices for the choice probabilities and the

arrival rate.

The probability that a booking occurs for

any product, given an arrival and choice set Z,

is therefore

QðZÞ ¼
X
j2Z

pjðZÞ

and the corresponding expected total revenue is

TRðZÞ ¼
X
j2Z

pjðZÞ � fj

Bellman equation
The dynamic program proceeds by considering

the concept of expected optimal future reven-

ue, or revenue to go, Jt(x). The goal is to find
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the strategy which maximizes J0(cap), the

optimal revenue at the beginning of the

booking process. The Bellman equation for

our problem now states that the optimal future

revenue satisfies the recursion relation:

Jt�1ðxÞ ¼max
Z�N
fl � TRðZÞ þQðZÞ � Jtðx� 1Þð Þ

þ 1� l �QðZÞð Þ � JtðxÞg;

with boundary conditions JT (x)¼ Jt (0)¼ 0.

The first term in the above corresponds to

the case when a sell occurs; the airline receives

one booking from the set of open classes in Z,

and continues with one seat less. The second

term corresponds to the no-sell situation,

where the airline continues with the same

amount of seats. The above optimization

problem has to be solved for each x and t in

order to find the optimal strategy Z�. Introdu-

cing the bid-price vector

BPtðxÞ ¼ JtðxÞ � Jtðx� 1Þ

one can write the optimization problem as:

Jt�1ðxÞ ¼ JtðxÞ þ l �max
Z�N

TRðZÞð

�BPtðxÞ �QðZÞÞ
ð1Þ

Observe now that for all x and t, this problem is

of the same form, namely

max
Z�N
ðTRðZÞ � BP �QðZÞÞ ð2Þ

where only the value of the bid-price may

change.

Efficient frontier
The problem of optimizing max

Z�N
ðTRðZÞ � BP �

QðZÞÞ is most easily analyzed by drawing

TR(Z) versus Q(Z) in a scatter plot for all

possible strategies of open classes, together with

the straight line BP �Q for specific values of the

bid-price. For comparison, the plot in Figure 4

is identical to Figure 3 describing the efficient

frontier for the deterministic case.

The optimum for the specific BP in the

chart is attained where the parallel shifted

line BP �Q is tangent to the convex hull of the

points (Q(Z ), TR(Z )). This strategy is marked

as Si in the chart.

Since the bid-price is always positive, only

strategies which lie on the efficient frontier

from S0 to Sm the set with maximal total

revenue can be solutions to the problem. We

refer to the discussion regarding the efficient

strategies from the deterministic case, which

translates identically to the DP case.

Marginal revenue transformation
The optimal strategy as function of the bid-

price can only consist of one of the vertices on

the efficient frontier. As long as the bid-price is

higher than the highest fare, we should close all

classes.1 We denote this strategy by S0. If the

bid-price falls below f1 the optimal strategy is

initially S1, until the bid-price falls below the

slope of the convex hull between S1 to S2. The

slopes of the efficient frontier correspond to

the critical values of the bid-price, where the

optimal strategy changes. The optimal strategy

for a given bid price BP is found by walking

along the efficient frontier from one strategy to

the next, increasing sales volume, as long as

MRk ¼
TRðSkÞ � TRðSk�1Þ

QðSkÞ �QðSk�1Þ
XBP:

The last strategy obtained this way is the optimal

strategy of open booking classes for bid price BP.

Once the efficient frontier is known, the

bid-prices can be calculated from the DP

formulation recursively. Because the efficient

frontier contains only a few of the possible

Demand Q

Total 
Revenue

Efficient 
Frontier

S1

Si-1

Si

TRi-1

TRi

Qi-1 Qi

S0

Sm

max

BP*Qp’i

Marginal 
revenue: f’i

Figure 4: Construction of convex hull.
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strategies, there are potentially many fare

structures with corresponding choice models

(identified by a set of pj(Z)) which will lead to

the same efficient frontier. All these models will

have the same bid-price. In particular consider

the independent demand model defined by:

p
0

k ¼ QðSkÞ �QðSk�1Þ; k ¼ 1; . . . ;m:

f
0

k ¼ MRk

¼ TRðSkÞ � TRðSk�1Þ
QðSkÞ �QðSk�1Þ

; k ¼ 1; � � � ;m

This is identical to the marginal revenue

transformation introduced in the section ‘Gen-

eral formulation’. Using the transformed

choice model (primed demand and fares) in

an independent demand DP instead of the

original choice model DP, the Bellman equa-

tion will produce the same bid-prices. Further-

more, as explained in the section ‘General

formulation’, we can associate the marginal

revenue or adjusted fares f 0k to the newly added

classes in Sk\Sk�1 provided the efficient frontier

is nested.

Network DP formulation
for a discrete choice model of
demand
Let us also touch briefly on the network DP

formulation of Talluri and van Ryzin (1998),

generalized to independent discrete choice

models for each itinerary. In each time slice

there is at most one request for the whole

network and the rate l is the probability that

the request is for a given itinerary. The state

becomes a vector (x1,?, xL) of the remaining

capacities for each leg. The second term on

the right hand side of equation (1) above

becomes a sum over all itineraries, where the

bid-price for an itinerary is the difference in

expected future revenue if on each leg one seat

is removed. An optimal strategy for each

itinerary has to be chosen. The optimization

problem therefore decomposes into a set of

independent optimizations of the form (2) for

each itinerary.

The DP network model has no practical

importance, since the number of possible states

explodes with capL. However the marginal

revenue transformation holds as well. This leads

us to conclude that any heuristic network

algorithm which assumes independent demand

by O-D itinerary can be easily extended to deal

with arbitrary fare structures by applying the

marginal revenue transformation. This will be

illustrated in the example with DAVN-MR

below.

Recover pricing DP model as a
special case
Let us consider as an example the case of a

fully undifferentiated fare structure. This model

is nested by fare order and we can there-

fore identify the efficient strategy index with

the original booking class index. A strategy

Sk therefore has class k and all classes with

higher fares open. If we insert the trans-

formed demand and transformed fares

into the Bellman recursion formula for a DP

with independent demand, we obtain the

following problem.

max
S

X
i2S

p
0

iðf
0

i � BPÞ

¼ max
k

Xk

i¼1

QðSiÞ �QðSi�1Þð Þ

� TRðSiÞ � TRðSi�1Þ
QðSiÞ �QðSi�1Þ

� BP

� �
¼ max

k
QðSkÞðfk � BPÞ½ �

In the last equation we have used that we

have a telescopic sum and that all demand

resides in the lowest open class and thus

TR(Sk)¼ fkQ(Sk). The last expression is iden-

tical to the pricing DP model of Gallego and

Van Ryzin (1997). The first optimization

problem above for independent demand is
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easily solved since only classes where f 0kXBP

should be included in the strategy S. If we

further insert the exponential sell-up with

equally spaced fares we obtain

max
S

X
i2S

p
0

ið f
0

i � BPÞ

¼ max
k
½expð�b � ðfk � fnÞÞ � ðfk � BPÞ�

We have shown in the section ‘Applications to

different fare structures’ that the fare modifier

for exponential sell-up and equally spaced

fare grid is a constant. Thus the open classes

are exactly those which have fi�fMXBP, a

result which would not be immediately

clear from optimization problem on the right

hand side.

Leg RM: EMSRb-MR
Here we show how EMSRb can be extended

to optimize a general fare structure. First we

will briefly consider the results for standard

unadjusted EMSRb, in order to be able to

compare with the transformed EMSRb-MR.

In standard EMSRb we consider independent

fare products with fares fi, with normally

distributed demands diBN(mi, si
2), i¼ 1,y, n.

The aggregated demand for fare product

i¼ 1,y, k is also normally distributed with

average m1,k¼
P

i¼ 1
k mi, variance s1,k

2 ¼P
i¼ 1
k si

2 and average fare f1;k ¼ m�1
1;k

P
k
i¼1mifi.

The joint protection level pk is then given by

pk ¼ m1;k þ s1;kF�1ð1� fkþ1=f1;kÞ, and the

booking limit by BLk¼ cap�pk.

For a general fare structure we need to apply

the formalism presented in the previous

sections, which consists of the following steps:

(1) Determine the strategies k¼ 1,y, m on

the efficient frontier.

(2) Apply the marginal revenue transformation

to both demands and fares.

(3) Apply EMSRb in the normal fashion using

the transformed demands and fares.

This method, called EMSRb-MR, thus

considers independent normally distributed

demands d 0kBN(mk,sk
2), with fares f 0k, k¼ 1,

y, m. Note that the demands are related to the

strategies not the individual fare products. The

aggregated demand, variance, and average fares

are calculated analogously using the trans-

formed demands and fares and hence

the formulas for the joint protection level

and the booking limit become exactly the

same: p
0
k ¼ m1;k þ s1;kF�1ð1� f

0
kþ1=f

0
1;kÞ, and

BL0k¼ cap�p0k.
Consider again the case of fully undiffer-

entiated fare products with equal spaced fares,

as presented in Table 1 and in section

‘Applications to different fare structures’. In

this case the strategies become nested and we

may associate an adjusted fare with each

strategy. For simplicity (and ease of compar-

ison) we will assume that the demands and

standard deviations are identical to those of the

fully differentiated case.

Table 2 compares the standard EMSRb

results in the case of differentiated fares with

Table 2: Comparison of Standard EMSRb and EMSRb-MR Booking Limits

Fare

product

Fare

value

Mean

Demand

Standard

Deviation

EMSRb

Limits

Adjusted

Fares (MR)

EMSRb-MR

Limits

1 $1200 31.2 11.2 100 $1200 100

2 $1000 10.9 6.6 80 $428 65

3 $800 14.8 7.7 65 $228 48

4 $600 19.9 8.9 46 $28 16

5 $400 26.9 10.4 20 $(172) 0

6 $200 36.3 12.0 0 $(372) 0

The bold columns contain the booking limits being compared.
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the modified booking limits coming from the

EMSRb-MR approach in the case of undiffer-

entiated fares. Note that the adjusted fares used

as input to EMSRb after the marginal revenue

transformation lead to closure of the lowest two

classes with negative marginal revenues. Classes

2 through 4 also get reduced seat availability,

given that the estimated potential for sell-up

has been incorporated into the marginal

revenue values of each class.

The adjusted EMSRb-MR overcomes spiral

down by modifying the resulting booking

limits to account for the estimated sell-up

potential, and thereby the dependent demand

forecasts, which results in closing availability

to the inefficient fare products (that is with

negative adjusted fares).

Network RM: DAVN-MR with
differentiated and undifferentiated
fare structures
For a large network airline, it is common

to offer a variety of fare structures in different

O-D markets, each with different restrictions,

as required to respond to competitors in each

market. However, individual flight legs to

or from a connecting hub provide seats to

multiple O-D markets, each of which can have

different fare structures. In this section we show

how to optimize a network with a mix of

differentiated fare products and undifferenti-

ated fare products. As an example we will

use DAVN (Displacement Adjusted Virtual

Nesting).

The marginal revenue transformation ap-

plied to DAVN (termed DAVN-MR) results in

transforming both demands and fares as

described in the previous sections. A particu-

larly simple expression for the adjusted fare is

obtained by assuming exponential sell-up and

equally spaced fares, as shown previously. The

adjusted fare becomes

adj f ¼ f 0 �
X

DC ¼ f � fM �
X

DC:

Here
P

DC refers to the standard DAVN

approach of calculating the marginal network

revenue contribution of accepting an O&D

passenger by subtracting the displacement costs

of carrying a passenger on connecting legs.

Further, we have used the previous result that

the adjusted fare can be expressed as the fare

minus a fare modifier. Thus this formula

extends the standard DAVN formula by just

an additional term ‘�fM’. Note that fM¼ 0 for

differentiated fare products. The undifferen-

tiated fare products are mapped to lower

buckets since fM>0 (except the highest un-

differentiated fare class). Also note that all

undifferentiated fare products with fares fofM
will be closed (regardless of remaining capacity)

since they map to negative adjusted fares.

DAVN-MR is then applied by running DAVN

in the standard fashion on the transformed fare

structure to produce booking limits by bucket

(in marginal revenue scale) for each leg. Finally,

note that the formula for the adjusted fare is

valid for an arbitrary fare structure with nested

efficient frontier, but there the fare modifier

will vary by class.

SIMULATION RESULTS USING
PODS
In this section, we present simulation results

from PODS (Passenger Origin Destination

Simulator) to illustrate the revenue impacts of

applying the marginal revenue transformation

in DAVN-MR, as described above. PODS and

its various components have been widely

PASSENGER
DECISION

MODEL

REVENUE
MANAGEMENT

OPTIMIZER

FORECASTER

HISTORICAL
BOOKING

DATA BASE

CURRENT
BOOKINGS

HISTORICAL
BOOKINGS

FUTURE
BOOKINGS

PATH/CLASS
AVAILABILITY

PATH/CLASS
BOOKINGS/

CANCELLATIONS

UPDATE

Figure 5: PODS simulation architecture.
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described in the literature – see for example,

Hopperstad (1997), Belobaba and Wilson

(1997), Lee (1998), and Carrier (2003). The

central concept in PODS is that the models of

the revenue management systems and the

model of passenger choice are contiguous but

independent. That is, the revenue management

system(s) define the availability of path/classes

in a market and the generated passengers pick

from the available path/classes and book. The

only information available to the revenue

management system(s) of the simulated airlines

for setting path/class availability is the history of

(previously simulated) passenger bookings.

Figure 5 illustrates this basic architecture.

In PODS, each simulated passenger chooses

among available path/class alternatives (that is,

itinerary and fare product combinations) with

fares lower than that passenger’s randomly

drawn maximum willingness-to-pay (WTP).

Business passengers have a higher input mean

WTP than leisure travellers. If there exist more

than one available path/class meeting this WTP

criterion, the passenger then chooses the

alternative with the lowest generalized cost,

defined as the sum of the actual fare and the

disutility costs with the restrictions (if any)

associated with each fare class. A passenger will

‘sell up’ from a preferred lower fare class (with a

lower generalized cost) to a more expensive
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Figure 6: PODS network D.
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one, therefore, if the lower class is closed due to

RM controls and if the higher fare is still lower

than the passenger’s WTP. The simulated sell-

up behaviour is thus imbedded in the PODS

passenger decision model, rather than specified

as an input sell-up parameter.

Figure 6 shows the geometry of network D,

one of the standard PODS networks. In net-

work D there are two airlines, each with their

own hubs. The traffic flow is from the 20

western cities to the hubs and to the 20 eastern

cities. Both airlines employ three connecting

banks per day, resulting in each airline operat-

ing 126 legs, which produce 1446 paths in 482

markets.

Six fare classes are assumed, and simulation

results are provided here for both an undi-

fferentiated and a semi-differentiated fare

structure, as shown in Figure 7. In the undi-

fferentiated case there are no fare restrictions or

advance purchase rules. In the semi-differen-

tiated case, two restrictions (no refunds in case

of cancellation and a fee for changing reserva-

tions) are applied to lower fare classes (Figure 7).

The focus of the simulation study is on

Airline 1 and its use of hybrid forecasting and

DAVN-MR. In the simulations, the effects of

each of the two components of the transforma-

tion were studied separately. Three scenarios

were considered:

K Standard: Airline 1 uses standard path/fare

class forecasting with DAVN (baseline).

K Hybrid: Airline 1 changes to Q/hybrid

forecasting, without fare adjustment.

K DAVN-MR: Airline 1 adds fare adjustment

to its Q/hybrid forecasting.

Note that hybrid forecasting for the fully

undifferentiated fare structure corresponds to

only using the price-oriented forecasting

model (so-called Q-forecasting) [Belobaba

and Hopperstad (2004)].

The three scenarios are examined, for the

undifferentiated and the semi-differentiated
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fare structures, first in a monopoly environment

where only Airline 1 is present and then

in a competitive environment where the

second airline uses standard path/fare class

forecasting and traditional DAVN network

RM optimization.

Monopoly case
The simulation results are presented in

Figure 8. In the panels the revenue index and

load factor (LF) are shown both for the

undifferentiated and the semi-differentiated

fare structures. The revenue index is reported

relative to the baseline monopoly case in which

the airline employs standard forecasting and

optimization.

The results show that applying hybrid

forecasting only, for both fare structures, leads

to significant revenue gains on the order

of 10 per cent–16 per cent. The reason is that

hybrid forecasting considers the buy-down

potential of the price oriented demand and

reduces spiral down. Note that load factors

for standard and hybrid forecasting are almost

identical. Hybrid forecasting can be thought

of as an attempt to ‘re-map’ passengers

that bought down back to their original fare

class.

Applying fare adjustment by moving to full

DAVN-MR leads to a further revenue increase

of about 16 per cent in both cases. The revenue

benefit of applying fare adjustment is significant

since its effect is to close lower fare classes,

which further restricts buy-down. This effect

can clearly be seen from the load factors.

Applying fare-adjustment leads to a significant

drop in load factor from 85 per cent to 72 per

cent–74 per cent.

Competitive case
The simulation results for the two-airline

competitive case are presented in Figure 9,
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Figure 9: Simulation results in the competitive case with undifferentiated and semi-differentiated fare-structures in

network D.
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with the panels organized as in Figure 8. The

revenue index is reported relative to a baseline

scenario in which both airlines employ standard

forecasting and DAVN network RM controls.

In a competitive simulation environment,

the results show that applying hybrid forecast-

ing again leads to significant revenue gains on

the order of 10 per cent–13 per cent. In

contrast to the monopoly case, the revenue

index for standard forecasting is nearly the same

for the unrestricted and semi-restricted cases.

The reason for this is that in a competitive

environment spiral-down is magnified by

competitive feedback, as passengers have a

greater set of path/class alternatives from which

to choose. With more alternatives, the lowest

class 6 is more frequently available on one of

the airlines. The consequence of this avail-

ability is that passengers who might have

bought-up to class 1 or 2 (from, say, classes 3

or 4) do not, because the fare difference

between these classes and class 6 is mostly

greater than the disutility the passengers

attribute to the restrictions. Quite simply, the

sell-up potential in a competitive market is

lower than in the monopoly case, even with the

same passenger choice characteristics.

Applying fare adjustment and thus full

DAVN-MR gives a further 9 per cent–14 per

cent revenue increase. The use of DAVN-MR

by Airline 1 causes load factors to drop from 85

per cent to 65–68 per cent. The competitor

picks up the spill-in of low fare passengers

rejected by Airline 1 and obtains load factors

of 93 per cent–94 per cent. Note that app-

lying DAVN-MR is not a zero-sum game.

When Airline 1 moves to DAVN-MR, Airline

2 also benefits from Airline 1’s change in

RM control. Airline 1’s gain comes from

extracting higher yields from passengers willing

to buy up to higher fare classes. The result is a

drop in Airline 1’s load factor (from 86 per cent

to 65 per cent) with a consequent 10–20

per cent increase in the apparent demand for

Airline 2, which gives it a revenue increase due

to higher load factors, albeit at much lower

yields.

CONCLUSION
We have described an approach to transform

the fares and the demand of a general discrete

choice model to an equivalent independent

demand model. This transformation is of great

practical importance to airlines, as it allows the

continued use of the optimization algorithms

and control mechanisms of traditional revenue

management systems, developed more than

two decades ago under the assumption of

independent demands for fare classes. The

transformation and resulting fare adjustment

approach is valid for both static and dynamic

optimization and extends unchanged to the

case of network problems (provided the net-

work problem is separable into independent

path choice probability). Assuming the efficient

frontier is nested (or approximately nested), the

implementation of the control mechanism can

be implemented very elegantly by associating to

each class the corresponding adjusted fare

obtained from the marginal revenue transfor-

mation and then applying the control mechan-

ism in the standard way.

NOTE

1 While this cannot be possible in our simple

stationary one-leg world, it could happen for

the network problem, or when the fare

structure would depend on the time step.

REFERENCES

Barnhart, C., Belobaba, P.P. and Odoni, A.R. (2003) Applica-

tions of operations research in the air transport industry.

Transportation Science 37(4): 368–391.

Belobaba, P.P. (1987) Air travel demand and airline

seat inventory management. Unpublished Ph.D. Thesis,

Massachusetts Institute of Technology, Cambridge, MA.

Belobaba, P.P. (1989) Application of a probabilistic decision

model to airline seat inventory control. Operations Research 37:

183–197.

Belobaba, P.P. (1992) Optimal vs. Heuristic Methods for Nested Seat

Allocation, Proceedings of the AGIFORS Reservations and

Yield Management Study Group, Brussels.

Belobaba, P.P. (1998) The evolution of airline yield management:

Fare class to origin-destination seat inventory control. In: D.

Jenkins (ed.) The Handbook of Airline Marketing. New York,

Optimization of mixed fare structures

169r 2010 Macmillan Publishers Ltd. 1476-6930 Journal of Revenue and Pricing Management Vol. 9, 1/2, 152–170



NY: The Aviation Weekly Group of the McGraw-Hill

Companies, pp. 285–302.

Belobaba, P. and Hopperstad, C. (2004) Algorithms for revenue

management in unrestricted fare markets. Presented at the

Meeting of the INFORMS Section on Revenue Manage-

ment, Massachusetts Institute of Technology, Cambridge,

MA.

Belobaba, P.P. and Weatherford, L.R. (1996) Comparing decision

rules that incorporate customer diversion in perishable

asset revenue management situations. Decision Sciences 27(2):

343–363.

Belobaba, P.P. and Wilson, J.L. (1997) Impacts of yield manage-

ment in competitive airline markets. Journal of Air Transport

Management 3(1): 3–10.

Boyd, E.A. and Kallesen, R. (2004) The science of revenue

management when passengers purchase the lowest available

fare. Journal of Revenue and Pricing Management 3(2): 171–177.

Bratu, S. J-C. (1998) Network value concept in airline revenue

management. Master’s thesis, Massachusetts Institute of

Technology, Cambridge, MA.

Brumelle, S.L. and McGill, J.I. (1993) Airline seat allocation

with multiple nested fare classes. Operations Research 41:

127–137.

Carrier, E. J. (2003) Modeling airline passenger choice: Passenger

preference for schedule in the passenger origin-destination

simulator. Unpublished Master’s Thesis, Massachusetts

Institute of Technology, Cambridge, MA.

Cooper, W.L., Homem-de-Mello, T. and Kleywegt, A. J. (2006)

Models of the spiral-down effect in revenue management.

Operations Research 54(5): 968–987.

Curry, R.E. (1990) Optimal airline seat allocation with fare

classes nested by origin and destinations. Transportation Science

24(3): 193–204.

Fiig, T., Isler, K., Hopperstad, C. and Cleaz-Savoyen, R. (2005)

DAVN-MR: A Unified Theory of O&D Optimization in a

Mixed Network with Restricted and Unrestricted Fare

Products. AGIFORS Reservations and Yield Management Study

Group Meeting, Cape Town, South Africa, May.

Gallego, G. and van Ryzin, G. (1997) A multi-product, multi-

resource pricing problem and its application to network yield

management. Operations Research 45: 24–41.

Guo, J.C. (2008) Estimation of sell-up potential in airline revenue

management systems. Unpublished Master’s Thesis, Massa-

chusetts Institute of Technology, Cambridge, MA.

Hopperstad, C.H. (1997) PODS Modeling Update. AGIFORS

Yield Management Study Group Meeting, Montreal, Canada.

Hopperstad, C.H. (2007) Methods for Estimating Sell-Up.

AGIFORS Yield Management Study Group Meeting, Jeju Island,

Korea.

Isler, K., Imhof, H. and Reifenberg, M. (2005) From Seamless

Availability to Seamless Quote. AGIFORS Reservations and

Yield Management Study Group Meeting, Cape Town, South

Africa, May.

Lautenbacher, C. J. and Stidham, S. J. (1999) The underlying

markov decision process in the single-leg airline yield

management problem. Transportation Science 33: 136–146.

Lee, A.Y. (1998) Investigation of competitive impacts of origin-

destination control using PODS. Unpublished Master’s

Thesis, Massachusetts Institute of Technology, Cambridge,

MA.

Lee, T.C. and Hirsch, M. (1993) A model for dynamic airline seat

inventory control with multiple seat bookings. Transportation

Science 27: 252–265.

Littlewood, K. (1972) Forecasting and Control of Passenger Bookings,

12thAGIFORS Annual Symposium Proceedings, Nathanya,

Israel, pp. 95–117.

McGill, J.I. and van Ryzin, G.J. (1999) Revenue management:

Research overviews and prospects. Transportation Science 33(2):

233–256.

Saranathan, K., Peters, K. and Towns, M. (1999) Revenue

Management at United Airlines. AGIFORS Reservations and

Yield Management Study Group, April 28, London.

Simpson, R.W. (1989) Using network flow techniques to

find shadow prices for market and seat inventory control,

memorandum M89-1, MIT Flight Transportation Laboratory.

Cambridge, MA: Massachusetts Institute of Technology.

Smith, B.C., Leimkuhler, J.F. and Darrow, R.M. (1992)

Yield management at american airlines. Interfaces 22(1):

8–31.

Smith, B.C. and Penn, C.W. (1988) Analysis of alternative

origin-destination control strategies. AGIFORS Symposium

Proceedings 28: 123–144.

Talluri, K.T. and van Ryzin, G. (1998) An analysis of bid-price

controls for network revenue management. Management

Science 44: 1577–1593.

Talluri, K.T. and van Ryzin, G. (2004) Revenue management

under a general discrete choice model of consumer behavior.

Management Science 50(1): 15–33.

Tretheway, M.W. (2004) Distortions of airline revenues: Why

the network airline business model is broken. Journal of Air

Transport Management 10(1): 3–14.

Vinod, B. (1995) Origin and destination yield management. In:

D. Jenkins (ed.) The Handbook of Airline Economics. New York,

NY: The Aviation Weekly Group of the McGraw-Hill

Companies, pp. 459–468.

Williamson, E.L. (1992) Airline network seat inventory

control: methodologies and revenue impacts. Ph.D.

Thesis, Massachusetts Institute of Technology, Cambridge,

MA.

Wollmer, R.D. (1992) An airline seat management model for a

single leg route when lower fare classes book first. Operations

Research 40(1): 26–37.

Fiig et al

170 r 2010 Macmillan Publishers Ltd. 1476-6930 Journal of Revenue and Pricing Management Vol. 9, 1/2, 152–170




