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Abstract As enhancements in airline IT begin to expand

pricing and revenue management (RM) capabilities, airli-

nes are starting to develop dynamic pricing engines (DPEs)

to dynamically adjust the fares that would normally be

offered by existing pricing and RM systems. In past work,

simulations have found that DPEs can lead to revenue

gains for airlines over traditional pricing and RM. How-

ever, these algorithms typically price each itinerary inde-

pendently without directly considering the attributes and

availability of other alternatives. In this paper, we intro-

duce a dynamic pricing engine that simultaneously prices

multiple substitutable itineraries that depart at different

times. Using a Hotelling line (also called a locational

choice model) to represent customer tradeoffs between

departure times and price, the DPE dynamically suggests

increments or decrements to the prices of pre-determined

fare products as a function of booking request character-

istics, departure time preferences, and the airline’s esti-

mates of customer willingness-to-pay. Simulations in the

Passenger Origin–Destination Simulator (PODS) show that

simultaneous dynamic pricing can result in revenue gains

of between 5 and 7% over traditional RM when used in a

simple network with one airline and two flights. The

heuristic produces revenue gains by stimulating new

bookings, encouraging business passenger buy-up, and

leading to spiral-up of forecast demand. However, simul-

taneous dynamic pricing produces marginal gains of less

than 1% over a DPE that prices each itinerary indepen-

dently. Given the complexity of specifying and imple-

menting a simultaneous pricing model in practice,

practitioners may prefer to use a flight-by-flight approach

when developing DPEs.

Keywords Dynamic pricing � Airline revenue

management � Substitutable flights � Dynamic pricing

engine � New Distribution Capability

Introduction

In traditional airline revenue management (RM), airlines

decide which pre-determined fare products to make avail-

able in response to booking requests. Each fare product is

typically assumed to have a fixed fare that has been

determined by the airline’s pricing department based on

market conditions. The RM decision of which fare products

to make available is a function of the capacity remaining

on the flight, a forecast of future demand, the time

remaining until the flight’s departure, and, increasingly,

estimates of customer willingness-to-pay (WTP).

Due to limitations in airline distribution technology, RM

has typically not focused on determining the set of possible

price points itself. At most airlines, pricing and RM are

separate processes carried out by different functional

teams. However, the development of advanced distribution

technologies like IATA’s New Distribution Capability

(NDC) could allow airlines to compute and distribute
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unique prices for individual shopping requests (Wester-

mann 2013; Fiig et al. 2015). In this future world, pricing

and RM could be completed in a single step, as airlines

would not need to pre-file a limited number of price points

prior to responding to booking requests.

These new technologies could allow airlines to begin

practicing continuous dynamic pricing, where prices are

selected among a continuous range of possible values

instead of from a finite set of pre-defined price points.

Prices could vary as a function of traditional RM inputs

like demand forecasts and remaining capacity, as well as

contextual information about the characteristics of indi-

vidual customers or booking requests. As a result, dynamic

pricing could give airlines significantly more flexibility to

adjust prices from transaction to transaction, potentially

increasing airline revenues.

Given the rich history of airline RM and the integrality

of pre-filed fare classes to many airline practices, it is

unlikely that large airlines (even those that have imple-

mented NDC) will fully abandon existing airline RM

practices in favor of continuous dynamic pricing. In the

short- to medium-term, dynamic pricing will have to

coexist with traditional pricing, RM, and distribution

systems.

As a result, a recent industry working group has focused

on developing so-called ‘‘dynamic pricing engines’’

(DPEs). A DPE is a dynamic price adjustment mechanism

which increments or discounts the pre-filed fares that

would ordinarily be offered by a RM system (Ratliff 2017).

Several different DPE methodologies for dynamically

altering filed fares have been proposed, including rules-

based engines (Fiig et al. 2016), a ‘‘virtual mark-up’’

methodology for increasing prices (Ratliff 2017), and

algorithmic approaches based on RM bid prices and esti-

mates of customer WTP (Wittman and Belobaba 2017).

To date, DPE research has focused on modifying the

prices for each itinerary independently, without directly

considering any possible interactions or substitutability

between different own-airline or competitor itineraries. Yet

passengers do not make decisions among itineraries inde-

pendently; the presence of an itinerary with a more-at-

tractive departure time or a less-expensive price could

change a customer’s purchase decision. DPEs that do not

explicitly consider differentiated attributes of itineraries

could inaccurately assess customer choice and miss out on

potential revenue gains.

In this paper, we provide a new DPE model for simul-

taneously pricing substitutable itineraries with differenti-

ated attributes. As with past DPEs, our model applies

dynamic increments or decrements to prices that would

ordinarily be offered by an existing airline RM system, as a

function of the attributes of each itineraries and the char-

acteristics of each booking request. However, unlike

previous work, our DPE directly considers customer choice

among itineraries with different attributes. Using the Pas-

senger Origin–Destination Simulator (PODS), we then

compare the performance of our simultaneous dynamic

pricing model with an existing heuristic that prices each

itinerary independently.

The remainder of the paper is structured as follows: we

first discuss some of the existing literature regarding

dynamic pricing of one or multiple itineraries. We then

present our model for customer choice between differen-

tiated itineraries, discuss how it is different from past work,

and introduce our model for simultaneous dynamic pricing.

Using the PODS simulator, we then show results of prac-

ticing these heuristics compared to more simple approa-

ches. Conclusions, implications for practitioners, and

suggestions for future work close out the paper.

Literature review

Dynamic pricing with airline revenue management

Since current distribution constraints require airlines to

select prices from preset fare structures, much of the

practice-focused research on airline revenue management

has focused on approaches for determining availability of

pre-defined fare products. Over the past three decades,

airline RM science has evolved from leg-based heuristics

for fare product availability to origin–destination control,

and from simple standard forecasting approaches to more

complex forecasters based on estimates of customer will-

ingness-to-pay (Fiig et al. 2015; Belobaba 2016).

Due to its current technical infeasibility, few practice-

focused papers have investigated the effects of dynamic

pricing, where airlines could select prices from a continu-

ous range of values instead of being limited to a small

number of pre-filed price points. Airlines considering

whether or not to implement some form of dynamic pricing

in practice need to consider two critical questions: (1) if

dynamic pricing can be implemented in a way that can

interact with legacy RM systems, and (2) if dynamic

pricing will improve revenues compared to traditional RM

practices. Several papers in the past decade have investi-

gated one or both of these questions.

Burger and Fuchs (2005) presented one of the first

practice-oriented dynamic pricing heuristics for airlines by

extending a dynamic programming approach for airline

RM. The authors find that after a brief calibration period,

their dynamic pricing heuristic approaches the true optimal

solution. The authors report a 2.4% increase in total rev-

enue from testing this dynamic pricing approach in a real-

life market. However, due to distribution constraints, the

authors were limited to adding only ten new price points,
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making their model more similar to previous availability-

based approaches.

In a later paper, Zhang and Lu (2013) create a different

model for dynamic pricing based on a dynamic program-

ming decomposition of a non-linear program. Their paper

is notable as it directly compares dynamic pricing to tra-

ditional airline RM with fixed prices, as well as to choice-

based RM, which incorporates a customer choice function

into the availability optimization. In their simulations in a

simple four-leg network, Zhang and Lu find that dynamic

pricing can lead to gains of 1 to 6% over traditional RM

systems.

Both the Burger and Fuchs (2005) and Zhang and Lu

(2013) approaches to dynamic pricing would require sig-

nificant changes to existing RM systems. In contrast,

dynamic pricing engines (DPEs) work by adjusting the

prices of pre-filed fare products for individual booking

requests after an existing RM system determines avail-

ability (Ratliff 2017). This approach has several advan-

tages: since DPEs can be used with filed fares, existing fare

rules and restrictions can be used when selecting the eli-

gible fare products for each booking request. DPEs can also

be used in conjunction with existing RM systems, allowing

airlines to partially implement dynamic pricing without

entirely abandoning legacy systems and technologies.

Two recent papers have proposed and tested DPEs

which dynamically increment or decrement prices as a

function of characteristics of booking requests. Fiig et al.

(2016) proposed a rules-based DPE and tested their model

in a two-airline network. Their DPE incorporates the bid

price from a traditional RM system, and assumes that air-

lines can segment requests into various customer types.

Simulations of these heuristics found revenue gains of up

to 6% from the base case of traditional airline RM. Unlike

the paper below, this model assumed that airlines had

information about competitors’ schedule quality, as well as

true willingness-to-pay parameters for each customer type.

Wittman and Belobaba (2017) introduced a dynamic

price adjustment model called PFDynA, which applies

increments or decrements to pre-filed fares in certain situ-

ations based on estimates of customer WTP. PFDynA also

assumes that airlines can segment incoming booking

requests into two types: leisure passengers (who typically

have a lower willingness-to-pay) and business passengers

(who typically have a higher willingness-to-pay). Simula-

tions of PFDynA have found that incrementing prices for

business passengers and discounting prices for leisure

passengers can increase yields and stimulate new demand,

leading to revenue gains of up to 4% compared to tradi-

tional RM in a complex competitive network.

Revenue management of multiple

substitutable flights

While dynamic pricing has been found in past work to

result in strong revenue gains, the literature in the previous

section typically assumes that only one product is available

for sale. In practice, customers often make decisions

between many different itineraries. Customers will weigh

the attributes of each itinerary along with the price to make

their purchasing decisions. As a result, the customer choice

model used in a multiple-itinerary dynamic pricing model

is central to the pricing recommendations made by the

model and the tractability of the model in practice.

Zhang and Cooper (2009) presented one of the first RM

models incorporating multiple substitutable itineraries in

an airline environment. Their model assumes a Markov

decision process to describe how customers make selec-

tions between different flights. However, the focus of their

paper is the performance of their heuristics relative to a

theoretical upper bound, and not the performance of

dynamic pricing in relation to existing airline RM methods.

It is also unclear if or how their model could interact with

current RM systems.

Following Zhang and Cooper (2009), several papers in

the operations research literature have described other

approaches for multiple-flight RM (Chen et al. 2010;

Akçay et al. 2010; Gallego and Wang 2014). These papers

typically use a multinomial logit (MNL) choice model to

describe customer decision making between various itin-

erary options. The MNL model has many advantages—it is

well studied and understood, and is easy to extend to

multiple flights.

However, as discussed in the next section, the MNL

model will tend to offer similar prices for flights with

similar marginal costs of capacity, which may not be

desirable in a situation with highly differentiated flights.

Moreover, these papers do not typically consider the inte-

gration of dynamic pricing into existing RM systems, nor

how the performance of dynamic pricing compares with

traditional airline RM methods. Also unlike our approach,

these models are not DPEs, as they do not focus on

adjusting prices contextually based on the characteristics of

each shopping request.

Prior to this paper, no work has considered dynamic

pricing of multiple itineraries in a DPE framework that is

compatible with existing RM practices. Previous papers

also do not provide a straightforward comparison between

dynamic pricing approaches that price itineraries individ-

ually versus those that price multiple flights simultane-

ously. We attempt to fill both of these gaps in the literature

with our model and simulation results, which are intro-

duced next.

A dynamic pricing engine for multiple substitutable flights



Models for dynamic pricing engines

Dynamic pricing of individual flights

First, consider a simple dynamic pricing problem with

multiple flights. Suppose an airline operates two non-stop

flights in a single isolated origin–destination market.

Assume these flights are identical in every way except

departure time: one of the flights (Flight 1) departs at 9am,

and the other (Flight 2) departs at 8pm. The flights are

shown in Fig. 1.

Using a dynamic pricing engine, the airline wishes to set

a price fi for each flight i 2 1; 2f g to maximize expected

revenue from each booking request. First, suppose that the

airline prices each flight independently. For each booking

request, the airline will solve these two equations to

maximize expected revenue for each flight separately:

f �1 ¼ argmax
f1

f1 � BP1ð Þ � Prob 1jf1ð Þ½ �

f �2 ¼ argmax
f2

½ f2 � BP2ð Þ � Prob 2jf2ð Þ�:

In these equations, fi represents the price for Flight

i 2 1; 2f g, BP1 represents the bid price (marginal cost of

capacity) for Flight i, and Prob ijfið Þ represents the proba-

bility that Flight i is purchased at price fi. In our model, we

assume that the bid price is output from a traditional airline

RM system. As in past DPE models (Fiig et al. 2016;

Wittman and Belobaba 2017), the bid price is an input into

the dynamic pricing equation, and not the output of a

simultaneous optimization of price and availability. This

allows dynamic price adjustment to be used with any

existing airline RM system that outputs a bid price.

We also do not yet specify a functional form for the

purchase probability Prob ijfið Þ. This purchase probability

could take many forms. For instance, in Wittman and

Belobaba (2017), the authors assumed that passengers had

a conditional willingness-to-pay h for each flight, and that

Prob ijfið Þ ¼ Probðh[ fiÞ. However, this formulation

ignores the possibility of substitution between the two

flights.

Simultaneous dynamic pricing of multiple flights

We now consider how the choice function could be mod-

ified to incorporate the presence of substitutable itineraries.

If we assume that each customer will purchase at most one

flight, the customer’s purchase probability is a function not

only of the price of Flight i, but also the price of the other

flight, as well as the attributes of both flights.

That is, with simultaneous dynamic pricing, we wish

to jointly optimize the prices of both flights as follows:

ðf �1 ; f �2 Þ ¼ argmax
f1;f2

f1 � BP1ð Þ � Prob 1jf1; f2ð Þ½

þ f2 � BP2ð Þ � Prob 2jf1; f2ð Þ�:

In this formulation, we simultaneously select prices for

both flights to maximize total expected revenue. This

increases the dimensionality of the problem, as shown in

Fig. 2. The flight-by-flight problem can be seen as finding

the optimal point on the expected revenue curve for each

flight independently, taking the prices of the other flight as

given. For instance, the optimal price for Flight 2 can be

seen as finding the maximum point on the revenue surface

along the dotted line in Fig. 2, along which the price of

Flight 1 remains constant. In contrast, the joint dynamic

pricing problem can be seen as finding the optimal point

across the entire revenue surface.

Choice models for substitutable flights

The purchase probability Prob ijf1; f2ð Þ in the simultaneous

pricing model incorporates the prices and attributes of both

flights. This means we need to specify a choice model to

describe how we assume customers will make choices

between alternatives. One possibility, which is common in

the operations research literature on pricing multiple sub-

stitutable products (e.g., Dong et al. 2009; Chen et al. 2010;

Suh and Aydin 2011), is to use a multinomial logit (MNL)

choice model.

In a basic MNL model, customers possess a utility Vi for

each flight. For instance, this utility Vi could be a function

of the price and some measure of schedule quality:

Vi ¼ �bfi þ SQi þ ei. Here, Vi is the customer’s utility for

Flight i, b is a measure of price elasticity, SQi is a measure

of the customer’s perception of the schedule quality of

Flight i, and ei is a random error term. The customer’s

choice probability Prob ijf1; f2ð Þ is

Prob ijf1; f2ð Þ ¼ eVi

P
j2f1;2g e

Vj
:

Fig. 1 A single market with two non-stop flights
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As discussed earlier, the multinomial logit model has

some advantages. For instance, adding additional flights

into the model is relatively easy; we would just need to add

additional terms to the denominator of the probability

calculation. However, there are also some disadvantages to

the MNL approach for our particular context.

Particularly, Aydin and Ryan (2000), Gallego and Wang

(2014), and others have shown variants of the result that at

optimal fares, f �1 � BP1 ¼ f �2 � BP2. That is, the mark-up

over the marginal cost of capacity (in our case, the bid

price) would be the same for both flights when an MNL

model is used to set optimal prices.

This means that if the bid prices for both flights were

identical, the optimal prices for both flights would be the

same using an MNL model, regardless whether one flight

has more desirable attributes than the other. As a result, the

MNL-based model would not sufficiently capture the dif-

ferences in schedule quality between itineraries.

We use a different approach from past literature to

construct our choice probabilities. This approach is com-

monly known as a Hotelling line, after a 1929 paper by

economist Harold Hotelling. It is commonly used to model

the choice of differentiated products in the economics lit-

erature. In the few papers in which the Hotelling model is

used in OR, it is often referred to as a locational choice

model (Gaur and Honhon 2006).

In the Hotelling choice model, we represent the attri-

butes of both itineraries on a horizontal line, as shown in

Fig. 3. This is a natural representation of attributes like

departure time, which are spread over the course of the day,

and for which customers have heterogeneous preferences.

Let Di represent the departure time of each flight, and draw

the line such that 0:00 is on the left end of the line and

24:00 is on the right end.

We assume that customers have random departure time

preferences x that are spread across the day according to

some distribution X. It makes sense that the preferences

would vary from customer to customer; perhaps some

customers prefer an early flight to make a morning meet-

ing, while others prefer a later flight to return home after a

vacation. At the same prices, there is no single departure

time that is preferable to another for all customers. We call

attributes like departure time horizontally differentiated

attributes, since customers’ preferences are heteroge-

neously distributed across the horizontal line.

For most customers, there will not be a scheduled flight

that departs at exactly their preferred departure time x. We

assume that customers incur a value-of-time disutility d for

each hour they move away from their preferred departure

time in either direction. For instance, suppose that for a

particular customer, x = 12pm, D1 = 9am, and D2 = 8pm.

This customer would face disutility 3d for selecting Flight

1 and 8d for selecting Flight 2. By adding together this

disutility and the price of the flight, we can compute the

perceived price of each flight: PPi ¼ fi þ d x� Dij j.
Customers in our model also have a maximum out-of-

pocket WTP budget h, which is distributed according to

some distribution H. H could be different for different

types of customers; for instance, leisure customers versus

those traveling for business. If the price of an itinerary

fi\h, we say the itinerary is affordable for that customer.

Among affordable itineraries, the customer deterministi-

cally selects the itinerary with the lowest perceived price.

Note that if the customer can only afford one itinerary, he

or she will select that itinerary with probability 1. If a

Fig. 2 Stylized example of the revenue surface for simultaneous dynamic pricing

A dynamic pricing engine for multiple substitutable flights



customer can afford neither itinerary, he or she will no-go

and purchase nothing.

Then, the probability that a customer will purchase

Flight 1 given fares f1 and f2 is

Prob 1jf1; f2ð Þ ¼ Prob f1\h\f2ð Þ þ Prob h[max f1; f2½ �ð Þ
� Prob PP1\PP2ð Þ:

The first term in this expression represents the proba-

bility that a customer will be able to afford only Flight 1, in

which case she will purchase it with probability 1. If f2\f1,

this term equals zero. The second term represents the

probability that the customer can afford both flights, and

that she will select Flight 1 because it has a lower per-

ceived price.

The probability Prob PP1\PP2ð Þ in the expression

above will depend on the distribution of departure prefer-

ences x. Specifically, it depends on the location of each

customer’s x relative to an indifference point x�:

x� ¼ D1 þ D2

2
þ f2 � f1

2d
:

If a customer has a departure time preference x ¼ x�,
he or she will be indifferent between selecting Flight 1 and

Flight 2 at given fares f1 and f2. Note that if the flights are

priced identically (f1 = f2), the indifference point will be

halfway between the departure times of the two flights.

Otherwise, x� is a function of the difference in fares

between the two flights, as well as the time value-of-time

disutility d.

If a customer has a departure time preference x to the

left of x�, he or she will prefer Flight 1 at fares f1 and f2. If

their departure time preference is to the right of x�, he or

she will prefer Flight 2 at those fares. Note that depending

on the position of x� and x, the customer may not always

select the flight with the departure time closest to her

departure time preference.

This gives us enough information to compute

Prob 1jf1; f2ð Þ and Prob 2jf1; f2ð Þ, as well as the probability

Prob NoGojf1; f2ð Þ that the customer can afford neither

itinerary.

Prob 1jf1; f2ð Þ ¼ Prob f1\h\f2ð Þ þ Prob h[max f1; f2½ �ð Þ
� Prob x\x�ð Þ

Prob 2jf1; f2ð Þ ¼ Prob f2\h\f1ð Þ þ Prob h[max f1; f2½ �ð Þ
� Prob x[x�ð Þ

Prob NoGojf1; f2ð Þ ¼ Prob h\min f1; f2½ �ð Þ:

These choice probabilities can be substituted into our

simultaneous dynamic pricing equation below:

ðf �1 ; f �2 Þ ¼ argmax
f1;f2

f1 � BP1ð Þ � Prob 1jf1; f2ð Þ½

þ f2 � BP2ð Þ � Prob 2jf1; f2ð Þ�:

The computation of these probabilities requires that

airlines have estimates of three parameters: the distribu-

tions of WTP H, the distributions of departure time pref-

erences X, and the value-of-time disutility d. If these

distributions vary by passenger type (i.e., leisure and

business), and customers can be segmented by type, then a

separate set of distribution parameters would need to be

estimated for each passenger type.

A simultaneous dynamic pricing engine for two

flights

We next discuss a method for simultaneous dynamic

pricing of two flights with a single horizontally differen-

tiated attribute (departure time). This method extends the

probabilistic fare-based dynamic adjustment (PFDynA)

method introduced in Wittman and Belobaba (2017).

In the new simultaneous dynamic pricing engine pre-

sented in this paper, leisure passengers are eligible for

discounts from the original RM fare, and business pas-

sengers are eligible for increments. To compute the

adjusted prices, the pair of prices ðf �1 ; f �2 Þ is computed as

above. We assume airlines have knowledge of the under-

lying departure time preference distribution X and value-

of-time disutility d. There are several models that exist for

time-of-day departure preference, such as the Boeing

Decision Window Model (Boeing 1996). There is also a

robust literature in values-of-time for transportation (e.g.,

Garrow et al. 2007; Mumbower et al. 2014; Seelhorst and

Liu 2015).

For WTP, we follow Wittman and Belobaba (2017) and

assume that WTP in each market follows a Normal dis-

tribution for each passenger type. To parameterize these

distributions, we use a concept called an ‘‘input

Fig. 3 A hotelling line for two horizontally differentiated flights
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Q-multiplier.’’ A Q-multiplier is a ratio of the lowest filed

fare in the market that is used to set the mean of the

assumed WTP distribution. If the lowest filed fare in the

market is $100, and the input Q-multiplier was 1.5, the

estimated Normal distribution of passenger WTP would

have a mean of $100 � 1.5 = $150. Note that if we expect

WTP for business passengers to be higher than leisure

passengers, we should use a higher input Q-multiplier for

business passengers.

To complete the specification, we assume a coefficient

of variation of k = 0.3.1 Thus, the distribution of WTP in

this market would be Normal with a mean of $150 and a

standard deviation of 0.3 9 $150 = $45. We can then

compute

Prob h[ fið Þ ¼ 1 � U�1 fi � QMULT � fn
k � QMULT � fn

� �

;

where U�1 is the inverse cumulative density function of the

standard Normal distribution.

In practice, a grid search algorithm was used to find the

pair of fares that maximizes expected revenue. We also

bound the incremented or discounted fares of the lowest-

available fare class by the adjacent higher and lower fare

classes in the pre-filed fare structure. This prevents fare

inversions (by ensuring the incremented fare does not rise

above the unadjusted fare in the next highest class) and

ensures that the RM system still has some say in deciding

the range of fares that are made available. Simultaneous

dynamic pricing can thus be seen as a DPE heuristic that

makes small dynamic adjustments to fares that would

otherwise be offered by traditional airline RM.

Simulation results

Simultaneous dynamic pricing was implemented and tested

in the MIT Passenger Origin–Destination Simulator

(PODS). PODS is an airline RM simulator that has been

under continuous development since the 1990s that models

the interactions between airlines, which use RM systems to

make various fare products available, and customers, who

make purchasing decisions among those fare products. The

inner workings of PODS have been documented in detail

by past work, e.g., Fiig et al. (2010), D’Huart and Belobaba

(2012), and Bockelie and Belobaba (2017).

PODS randomly generates a number of passengers for

each simulation run. Each passenger is created with a

customer type: either leisure or business, as well as other

attributes including a maximum WTP for air travel, a

preferred window of departure times, and disutilities for

various fare restrictions. Business passengers are more

likely to arrive later in the booking process, have a higher

maximum WTP, and have higher disutilities for onerous

fare restrictions than leisure passengers. PODS passengers

may choose to buy up to a more-expensive, less-restricted

class to avoid the restrictions from a less-expensive class,

and will choose to no-go if no classes are available or

affordable.

Dynamic pricing was tested in several PODS networks.

Network A1TWO is a network that mimics the example

given earlier. It contains one market and one airline, which

operates two non-stop flights in that market. The flights

depart at 9am and 8pm. In the context of PODS, the 9am

(morning) flight is seen as the more-attractive flight, and

the 8pm (evening) flight is seen as the less-attractive flight.

Network A2FOUR is an extension of A1TWO with one

market and two airlines, each of which operate a 9am and

an 8pm departure. This allows us to test the performance of

dynamic pricing in a competitive environment.

In these simple networks, the airlines control availability

using the leg-based EMSRb heuristic (Belobaba 1992) and

standard pick-up forecasting. A deterministic linear pro-

gram (e.g., Smith and Penn 1988) was used to calculate the

bid prices for each flight leg for use in the dynamic price

adjustment calculation. The so-called ‘‘EMSRc’’ critical

value (Bratu 1998), which is the expected marginal seat

revenue of the last available seat on the aircraft, could also

be used as a bid price when computing dynamic price

adjustments.

The airline uses a six-class restricted fare structure,

which is shown in Table 1. R1, R2, and R3 represent fare

restrictions, such as a Saturday night minimum stay, that

are onerous to customers. R1 is the most onerous restric-

tion, and R3 is the least onerous. The network was cali-

brated in low-demand (78% average load factor), medium-

demand (83% ALF), and high-demand (87% ALF)

scenarios.

In this test, we assume that airlines can segment per-

fectly between leisure and business passengers. As

described above, leisure passengers will only be eligible for

discounts from the RM fare under dynamic pricing, and

business passengers will only be eligible for increments.

1 Different coefficients of variations were tested with little change to

experimental outcomes.

Table 1 Fare structure used in network A1TWO and A2FOUR

Class Fare Adv. purch. R1 R2 R3

1 $500 N/A N N N

2 $400 3 days N N Y

3 $300 7 days N Y Y

4 $200 10 days Y N Y

5 $150 14 days Y Y N

6 $100 21 days Y Y Y
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We also assume airlines have knowledge of the underlying

departure time preference distribution X used by PODS.

The value-of-time disutility d is also known to the air-

line, and is set to $40 per hour for business passengers and

$20 per hour for leisure passengers. This 2:1 ratio of

business value-of-time to leisure value-of-time is similar to

that used for internal use by the U.S. Department of

Transportation (U.S. Department of Transportation 2016).

In a sensitivity analysis, different input ratios between

business and leisure values of time yielded similar rev-

enues; these results are omitted here for brevity.

To specify estimates of WTP, the airlines use the

Q-multiplier parameters described above. Recall that input

Q-multipliers represent the airline’s estimate of WTP for

each passenger type in the market, and are used to con-

struct the distribution of WTP used by the DPE. For these

tests, the airlines use an input Q-multiplier of 2.0 for

business passengers and 1.5 for leisure passengers, along

with a coefficient of variation of 0.3. Note that each airline

does not know the exact departure time preference or actual

maximum WTP for any specific customer.

Tests of dynamic pricing in a single-airline network

First, we test a DPE that applies dynamic price adjustments

to each flight individually, without directly incorporating

the possibility of substitution. With flight-by-flight

dynamic pricing, business passengers are eligible for

increments and leisure passengers are eligible for dis-

counts, as described in the previous section, and the pas-

senger choice function for each flight does not include the

prices or characteristics of other itineraries. Despite the fact

that it does not explicitly consider substitution of passen-

gers between different itineraries, flight-by-flight dynamic

pricing has shown good performance in past tests, even in

complex networks with many itineraries (Wittman and

Belobaba 2017).

Figure 4 shows the results of using flight-by-flight

dynamic pricing in the single-carrier Network A1TWO. In

this network, flight-by-flight dynamic pricing increases

airline revenues between 4.8% over the base case in the

low-demand environment and 6.5% over the base case in

the high-demand environment.

Flight-by-flight dynamic pricing leads to revenue gains

through several mechanisms. First, by giving discounts to

selected leisure passengers, particularly those booking in

higher fare classes, the airline can stimulate additional

demand that otherwise would have chosen to no-go. This

can increase the airline’s load factors. Also, by incre-

menting fares for certain business passengers, particularly

those booking in lower fare classes, the airline can increase

yields as well. Incrementing can also encourage some

business passengers to buy up to higher fare classes, since

higher classes will become relatively more attractive when

the prices of lower, heavily restricted classes are increased.

This buy-up behavior also improves the airline’s fare class

mix.

As Fig. 5 shows, flight-by-flight dynamic pricing

increases both load factors and yields in the low-demand

and medium-demand scenarios. For instance, in medium

demand, the airline’s average load factor increases from

83.0 to 84.3%, and its passenger yield increases by 4%. In

the high-demand scenario, load factors decline slightly as

business increments and a reduction in availability in lower

fare classes causes some passengers to no-go, but yields

increase by 7% as a result of business passenger increments

and improvements in fare class mix. We will see some

similar patterns in the performance of the simultaneous

DPE below.

Simultaneous dynamic pricing

Figure 6 shows the results of using the simultaneous DPE

described earlier, which directly models the choice of

passengers between multiple flights. As the figure shows,

the total revenue gains of simultaneous dynamic pricing are

in the range of 5.4 to 7.4% over the base case of traditional

airline RM. Compared to flight-by-flight dynamic pricing,

the simultaneous pricing model improves revenue perfor-

mance from 0.6 to 0.9% across all three demand scenarios.

The total revenue results from Fig. 6 are among the

higher end of the revenue gains for dynamic pricing pre-

sented in past work (e.g., Zhang and Lu 2013; Fiig et al.

2016; Wittman and Belobaba 2017). However, it should be

noted that the airline using simultaneous dynamic pricing is

assumed to have a great deal of information about the

passengers: the actual departure time preference distribu-

tion and value-of-time disutility, as well as a good estimate

of leisure and business WTP and perfect passenger type

identification accuracy.

When the airline uses simultaneous dynamic pricing, it

sees increases in both load factor and passenger yield, as

was the case with flight-by-flight dynamic pricing, as

shown in Fig. 7. As shown in Fig. 8, the yield increases

come from the increments provided to business passengers,

and from discounts that stimulate new leisure passenger

bookings in higher fare classes. As a result, the more-at-

tractive morning flight and the less-attractive evening flight

both show increases in average revenue of 4.2 and 9.2%,

respectively, over the base. Also, as Fig. 7 shows, the

increases in both yield and load factor from simultaneous

dynamic pricing persist in all demand scenarios.

These increases in yield and load factor are possible

even though most passengers book with neither an incre-

ment nor a discount. On the more-attractive morning flight,

6.3% of passengers book with an increment, and 9.3%
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book with a discount when simultaneous dynamic pricing

is used, as shown in Fig. 8. On the less-attractive evening

flight, just 1.4% of passengers book with an increment, and

17.8% book with a discount.

The targeted discounts on the evening flight shift

demand from the morning flight to the evening flight, as

shown in Fig. 9. In the base case, the more-attractive

morning flight had a higher load factor of 87.4%, compared

to just 78.7% for the less-attractive evening flight. By

discounting the evening flight for certain customers

through simultaneous dynamic pricing, the load factor of

the less-attractive flight increases to 86.2%. Meanwhile, the

load factor of the morning flight reduces to 83.7%.

Simultaneous dynamic pricing also improves the fare

class mix on both flights. Figure 10 shows that both flights

see fewer bookings in the least-expensive fare class (FC) 6

when simultaneous dynamic pricing is used. This makes

sense for the morning flight, since price-sensitive demand

is shifted to the evening flight and fare increments

encourage business passengers to buy up to higher classes

Fig. 4 Revenues when AL1 uses flight-by-flight dynamic pricing (single-airline network A1TWO)

Fig. 5 AL1 load factors (left panel) and passenger yield ($ per RPM; right panel) when AL1 uses flight-by-flight dynamic pricing (single-airline

network A1TWO)
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on the morning flight. It is surprising to see that the fare

class mix also improves on the evening flight, on which

17.8% of customers booked with discounts and only 1.4%

booked with increments.

The rationale behind this unexpected result is a concept

we refer to as ‘‘forecast spiral-up’’ (Wittman and Belobaba

2017). With simultaneous dynamic pricing, discounts are

provided to leisure customers booking in relatively higher

fare classes. This causes more bookings to be recorded in

these higher classes. Then, the RM forecaster begins to

account for the additional bookings it is seeing in higher

classes by increasing demand forecasts for those classes

and lowering demand forecasts for less-expensive classes.

As shown in Fig. 11, the RM system’s demand forecasts

for fare classes 5 and 6 decrease when the airline uses

simultaneous dynamic pricing, and forecasts increase for

higher fare classes 1–4. As a result, the RM optimizer

begins to protect more seats for higher classes, saving

fewer seats for the lowest fare class (FC6).

Fig. 6 Revenues when AL1 uses flight-by-flight dynamic pricing or simultaneous dynamic pricing of both itineraries (single-airline network

A1TWO)

Fig. 7 Average load factor (left panel) and passenger yield ($ per RPM; right panel) with simultaneous dynamic pricing
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Due to forecast spiral-up, we see higher bid prices and

FC6 closed more often when the airline is using simulta-

neous dynamic pricing. We also see fewer early bookings

(due to reduced availability in the least-expensive fare class

relative to the base) and an increase in later bookings (due

to discounts being provided to leisure customers in higher

fare classes) when simultaneous dynamic pricing is used.

Both of these effects combine to increase yields and load

factors, leading to revenue increases from the DPE.

Adding a competitor

Finally, a competitor is added to the network which also

offers an identical morning flight at 9am and an evening

flight at 8pm. The competitor airline also uses EMSRb with

standard pick-up forecasting, and the demand in the new

network baseline is recalibrated to an average load factor of

83.5% for both airlines. We will investigate two scenarios:

Airline 1 (AL1) only using simultaneous dynamic pricing,

and both airlines using simultaneous dynamic pricing.

As shown in Fig. 12, simultaneous dynamic pricing is

revenue positive when practiced by one or both airlines. If

one airline practices simultaneous dynamic pricing in this

Fig. 8 Passengers on each flight booking with and without dynamic price adjustments with simultaneous dynamic pricing

Fig. 9 Average load factors by flight with simultaneous dynamic pricing
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network, it sees a revenue gain of 7%, while its competitor

sees no revenue change (the 0.2% increase is not statisti-

cally significant). If both airlines practice simultaneous

dynamic pricing, they both see revenue gains between 6

and 6.5%, which is similar to the gains shown in the single-

airline case in the medium-demand scenario.

When there are multiple airlines in the network, the use

of simultaneous dynamic pricing by only one airline can

lead to passengers shifting between carriers relative to the

base.

The net result of this behavior, as shown in Fig. 13, is an

increase in load factor for both AL1 and AL2 even when

only AL1 uses simultaneous dynamic pricing.

For AL1, load factors increase due to the discounts it

provides to leisure passengers, although it may lose some

business passengers to AL2 as a result of incrementing.

AL2 is able to increase its load factor relative to the base

by recapturing some of AL1’s business passengers. AL2

will also tend to have better availability in the least-ex-

pensive FC6 than AL1, which closes down FC6 more often

as a result of forecast spiral-up. This means AL2 will gain

Fig. 10 Fare class mix by flight when AL1 uses simultaneous dynamic pricing

Fig. 11 Initial demand forecasts by fare class when AL1 uses simultaneous dynamic pricing
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more bookings in the lowest fare class, lowering its yield

relative to the base. However, AL2’s increase in load factor

helps compensate for its reduction in yield, leading to no

significant overall change in revenue from the base. When

both airlines use simultaneous dynamic pricing, they both

see higher revenues, yields and load factors, as in the

single-airline case.

Conclusions of simulation results

In this section, we tested our simultaneous dynamic pricing

engine and compared it to previous flight-by-flight

dynamic pricing approaches. We found that dynamically

pricing both flights simultaneously reinforces the desirable

shift in demand that it was designed to produce: namely,

price-sensitive customers shift from the more-attractive

9am departure to the less-attractive 8pm departure.

However, this shift in demand leads to relatively mar-

ginal (although positive) changes in revenue over flight-by-

flight dynamic pricing when each flight was priced sepa-

rately. Figure 14 shows that flight-by-flight dynamic pric-

ing also naturally leads to lower load factors on the

morning flight (through incrementing) and higher load

factors on the evening flight (through discounting), even

Fig. 12 Airline revenues when one or both airlines use simultaneous dynamic pricing

Fig. 13 Airline load factors (left panel) and yields ($ per RPM; right panel) when one or both airlines use simultaneous dynamic pricing
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without directly considering the substitutability between

the two flights in its choice probabilities.

While it is encouraging that simultaneously pricing both

flights together leads to higher revenues than pricing each

flight separately, recall that the airline using the simulta-

neous dynamic pricing heuristic was assumed to know a

significant amount of additional information: the actual

underlying departure time preference distribution, as well

as the value-of-time disutilities for each passenger type.

Even under this very optimistic assumption, the additional

revenue gain over dynamic pricing of each flight inde-

pendently was less than 1%. This is good news for dynamic

pricing practitioners, as it suggests that simple models for

customer choice could capture the majority of revenue

gains from dynamic pricing.

Conclusions and extensions

In this paper, we introduced and tested a new methodology

for a dynamic pricing engine (DPE) to simultaneously

price two flights with different departure times. In contrast

to other approaches, which use multinomial logit choice

models, we used a locational choice model to frame cus-

tomers’ purchasing decisions based on their willingness to

pay and departure time preferences. We then described a

simultaneous dynamic pricing method which applied

increments or decrements to the lowest-available fares that

are output by an airline’s RM system.

Through simulations in the Passenger Origin–Destina-

tion Simulator (PODS), we found that simultaneous

dynamic pricing led to revenue gains of between 5 and 7%

over the base case in a simple network with one airline, one

market, and two non-stop flights. This heuristic perfor-

mance was at the upper range of dynamic pricing heuristics

reported in the literature, but also assumed that airlines

could accurately segment booking requests into leisure and

business categories, and possessed good information about

the departure time preferences and value-of-time disutili-

ties of their customers.

However, simultaneous dynamic pricing produced gains

of less than 1% over a version of dynamic pricing that

priced each flight independently. In other words, a simple

customer choice model was able to capture most of the

revenue gains of dynamic pricing, and additional com-

plexity added only marginal benefits. Given the challenges

of estimating and implementing a simultaneous DPE in

practice, practitioners may be content to rely on flight-by-

flight dynamic pricing, at least for early DPE adaptations.

If airlines do begin simultaneously pricing itineraries

with DPEs, there are several directions in which this work

could be extended to make the model more relevant to

different choice environment. For instance, additional

itinerary quality attributes could be added to the choice

model, and the presence of competitors could also be

introduced into the customer choice function. It would also

be possible to increase the number of customer segments

that the airline can identify. A more complex choice model

that incorporates additional attributes could potentially

further improve the performance of simultaneous dynamic

pricing.

Fig. 14 Load factors by flight when AL1 uses flight-by-flight dynamic pricing or simultaneous dynamic pricing of both itineraries (single-airline

network A1TWO)
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Finally, the simultaneous choice model within the DPE

could be extended to three or more flights. This is a doable

yet cumbersome mathematical exercise, because it requires

that the algorithm considers each combination of possible

choice sets. Given the marginal gains of two-flight simul-

taneous dynamic pricing over the flight-by-flight approach,

the addition of further flights to the choice model would

likely show decreasing returns to scale.

Acknowledgements Michael Wittman would like to thank Craig

Hopperstad for excellent development assistance with PODS; mem-

bers of the MIT PODS Consortium for funding and helpful sugges-

tions; participants of the 2017 AGIFORS RM Study Group Meeting;

and Jan Vilhelmsen, Robin Adelving, and Jean-Michel Sauvage for

their hospitality during the author’s research visit at Amadeus in

August 2016.

References
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